GstCUDA - cudafilter

From RidgeRun Developer Connection
Jump to: navigation, search


Previous: GstCUDA Quick Prototyping Elements Index Next: cudamux


Nvidia-preferred-partner-badge-rgb-for-screen.png



This page describes in detail the cudafilter element of the GstCUDA plugin.

Description

Cudafilter is a one input/output pad video filter GStreamer element, that allows video frames to be processed by the GPU using a custom CUDA library algorithm. With this element users can now develop their own CUDA processing library, pass the library into cudafilter, which executes the library on the GPU, passing upstream frames from the GStreamer pipeline to the GPU and passing the modified frames downstream to the next element in the GStreamer pipeline.


This element executes the CUDA algorithm from a custom CUDA library (XXX.so file) loaded dynamically during run-time, passed trough an element's property. The CUDA algorithm is separated from the GStreamer element, so the developer could make modifications to the CUDA algorithm, recompile the custom CUDA library and run the GStreamer pipeline again to test the changes. This process can be iterated as many times as needed to debug a custom CUDA algorithm. This feature make cudafilter ideal for quick prototyping because it offers flexibility and adaptability to many project requirements.


The key feature of this element is the capability to load the CUDA algorithm to be executed on the GPU to process the incoming frames, from an external compiled custom CUDA library. This gives the advantage of having the GStreamer element separated from the CUDA algorithm. So, the developer doesn't have to worry about the GStreamer-CUDA interface and complex memory handling, because the cudafilter will take care of that. Instead, the developer can be focused on the custom CUDA algorithm development, and test any change made during the debugging process by just recompiling the CUDA library and just execute the GStreamer pipeline again without the necessity to modify, recompile and reinstall the GstCUDA plugin. This feature is crucial in reducing the time to market on project development because considerably accelerates the prototyping stage.


The cudafilter could be viewed as a generic single input/single output pads video filter element that executes any custom CUDA algorithm provided by the user. So, this allows the user to develop different CUDA algorithms at the same time and test them using the same cudafilter element, by just changes the element's property that specifies the CUDA library that should be loaded during pipeline execution.


Key features

  • Single input/single output pads filter element topology.
  • Dynamically load of an external compiled CUDA library that contains the CUDA algorithm to be executed in the GPU to process the incoming frames.
  • Independence between the GStreamer element and CUDA algorithm.
  • Generic GStreamer element that could execute custom CUDA algorithms.
  • Adaptability to many project requirements.
  • Ideal for quick prototyping and reducing time to market of project development.
  • High performance, due to zero memory copies interface between CUDA and GStreamer.
  • Directly handle of NVMM memory type buffers.


Documentation

Cudafilter element documentation.


Element inspect

 1 $ gst-inspect-1.0 cudafilter
 2 Factory Details:
 3   Rank                     none (0)
 4   Long-name                cudafilter
 5   Klass                    Filter
 6   Description              Allows frames to be processed by the GPU using a custom CUDA library algorithm.
 7 			   Single input single output topology filter element.
 8   Author                   Adrian Cervantes <adrian.cervantes@ridgerun.com> 
 9 			   Diego Chaverri <diego.chaverri@ridgerun.com> 
10 			   Daniel Garbanzo <daniel.garbanzo@ridgerun.com> 
11 			   Enrique Ramirez <enrique.ramirez@ridgerun.com> 
12 			   Michael Gruner <michael.gruner@ridgerun.com>
13 
14 Plugin Details:
15   Name                     cuda
16   Description              Allows frames to be processed by the GPU using a custom CUDA library algorithm
17   Filename                 /usr/lib/aarch64-linux-gnu/gstreamer-1.0/libgstcuda.so
18   Version                  0.3.0.1
19   License                  Proprietary
20   Source module            gst-cuda
21   Source release date      2017-12-26 19:30 (UTC)
22   Binary package           GStreamer CUDA Plug-in
23   Origin URL               Unknown package origin
24 
25 GObject
26  +----GInitiallyUnowned
27        +----GstObject
28              +----GstElement
29                    +----GstBaseTransform
30                          +----GstCudaBaseFilter
31                                +----GstCudaFilter
32 
33 Pad Templates:
34   SINK template: 'sink'
35     Availability: Always
36     Capabilities:
37       video/x-raw(memory:NVMM)
38                  format: I420
39                   width: [ 1, 2147483647 ]
40                  height: [ 1, 2147483647 ]
41               framerate: [ 0/1, 2147483647/1 ]
42 
43   SRC template: 'src'
44     Availability: Always
45     Capabilities:
46       video/x-raw
47                  format: I420
48                   width: [ 1, 2147483647 ]
49                  height: [ 1, 2147483647 ]
50               framerate: [ 0/1, 2147483647/1 ]
51       video/x-raw(memory:NVMM)
52                  format: I420
53                   width: [ 1, 2147483647 ]
54                  height: [ 1, 2147483647 ]
55               framerate: [ 0/1, 2147483647/1 ]
56 
57 
58 Element Flags:
59   no flags set
60 
61 Element Implementation:
62   Has change_state() function: gst_element_change_state_func
63 
64 Element has no clocking capabilities.
65 Element has no URI handling capabilities.
66 
67 Pads:
68   SINK: 'sink'
69     Pad Template: 'sink'
70   SRC: 'src'
71     Pad Template: 'src'
72 
73 Element Properties:
74   name                : The name of the object
75                         flags: readable, writable
76                         String. Default: "cudafilter0"
77   parent              : The parent of the object
78                         flags: readable, writable
79                         Object of type "GstObject"
80   qos                 : Handle Quality-of-Service events
81                         flags: readable, writable
82                         Boolean. Default: false
83   location            : Location of the CUDA algorithm library to load
84                         flags: readable, writable
85                         String. Default: null
86   in-place            : Use in-place transform mode configuration
87                         flags: readable, writable
88                         Boolean. Default: false


Previous: GstCUDA Quick Prototyping Elements Index Next: cudamux