Difference between revisions of "GstInference/Supported backends/NCSDK"

From RidgeRun Developer Connection
Jump to: navigation, search
(Installation)
(Installation)
Line 15: Line 15:
 
=Installation=
 
=Installation=
  
You can install the NCSDK on a system running Linux directly, downloading a Docker container, on a virtual machine or using a Python virtual environment. Al the possible installation paths are documented on the [https://movidius.github.io/ncsdk/install.html official installation guide].
+
You can install the NCSDK on a system running Linux directly, downloading a Docker container, on a virtual machine or using a Python virtual environment. All the possible installation paths are documented on the [https://movidius.github.io/ncsdk/install.html official installation guide].
  
 
We also provide an installation guide with troubleshooting on the [[Intel_Movidius_NCSDK_Installation | Intel Movidius Installation wiki page]]
 
We also provide an installation guide with troubleshooting on the [[Intel_Movidius_NCSDK_Installation | Intel Movidius Installation wiki page]]

Revision as of 13:25, 20 December 2018



Previous: Supported backends Index Next: Example pipelines




The NCSDK Intel® Movidius™ Neural Compute SDK (Intel® Movidius™ NCSDK) enables deployment of deep neural networks on compatible devices such as the Intel® Movidius™ Neural Compute Stick. The NCSDK includes a set of software tools to compile, profile, and validate DNNs (Deep Neural Networks) as well as APIs on C/C++ and Python for application development.

The NCSDK has two general usages:

  • Profiling, tuning, and compiling a DNN models.
  • Prototyping user applications, that run accelerated with a neural compute device hardware, using the NCAPI.

Installation

You can install the NCSDK on a system running Linux directly, downloading a Docker container, on a virtual machine or using a Python virtual environment. All the possible installation paths are documented on the official installation guide.

We also provide an installation guide with troubleshooting on the Intel Movidius Installation wiki page

Tools

mvNCCheck

Checks the validity of a Caffe or TensorFlow model on a neural compute device. The check is done by running an inference on both the device and in software and then comparing the results to determine a if the network passes or fails. This tool works best with image classification networks. You can check all the available options on the official documentation.

For example lets test the googlenet caffe model downloaded by the ncappzoo repo:

mvNCCheck -w bvlc_googlenet.caffemodel -i ../../data/images/nps_electric_guitar.png -s 12 -id 546  deploy.prototxt -S 255 -M 110
  • -w indicates the weights file
  • -i the input image
  • -s the number of shaves
  • -id the expected label id for the input image (you can find the id for any imagenet model here)
  • -S is the scaling sice
  • -M is the substracted mean after scaling

Most of these parameters are available from the model documentation. The command produces the following result:

lob generated
USB: Transferring Data...
USB: Myriad Execution Finished
USB: Myriad Connection Closing.
USB: Myriad Connection Closed.
Result:  (1000,)
1) 546 0.99609
2) 402 0.0038853
3) 420 8.9228e-05
4) 327 0.0
5) 339 0.0
Expected:  (1000,)
1) 546 0.99609
2) 402 0.0039177
3) 420 9.0837e-05
4) 889 1.2875e-05
5) 486 5.3644e-06
------------------------------------------------------------
 Obtained values 
------------------------------------------------------------
 Obtained Min Pixel Accuracy: 0.0032552085031056777% (max allowed=2%), Pass
 Obtained Average Pixel Accuracy: 7.264380030846951e-06% (max allowed=1%), Pass
 Obtained Percentage of wrong values: 0.0% (max allowed=0%), Pass
 Obtained Pixel-wise L2 error: 0.00011369892179413199% (max allowed=1%), Pass
 Obtained Global Sum Difference: 7.236003875732422e-05
------------------------------------------------------------

mvNCCompile

Compiles a network and weights files from Caffe or TensorFlow models into a graph file that is compatible with the NCAPI.

For example, giving a caffe model (bvlc_googlenet.caffemodel) and a network description (deploy.prototxt):

mvNCCompile -w bvlc_googlenet.caffemodel -s 12 deploy.prototxt

This command will output the graph and output_expected.npy files, that will be used later on the API

mvNCProfile

Compiles a network, runs it on a connected neural compute device, and outputs profiling info on the terminal and on an HTML file. The profiling data contains layer performance and execution time of the model. The html version of the report also contains a graphical representation of the model. For example, to profile the googlenet network:

mvNCProfile deploy.prototxt -s 12

The output looks like:

mvNCProfile v02.00, Copyright @ Intel Corporation 2017

****** WARNING: using empty weights ******
Layer  inception_3b/1x1  forced to im2col_v2, because its output is used in concat
/usr/local/bin/ncsdk/Controllers/FileIO.py:65: UserWarning: You are using a large type. Consider reducing your data sizes for best performance
Blob generated
USB: Transferring Data...
Time to Execute :  115.95  ms
USB: Myriad Execution Finished
Time to Execute :  98.03  ms
USB: Myriad Execution Finished
USB: Myriad Connection Closing.
USB: Myriad Connection Closed.
Network Summary

Detailed Per Layer Profile
                                                                                                                                                                                      
                                               Bandwidth       time
#    Name                           MFLOPs      (MB/s)         (ms)
=======================================================================
0    data                            0.0        55877.1        0.005
1    conv1/7x7_s2                  236.0         2453.0        5.745
2    pool1/3x3_s2                    1.8         1346.8        1.137
3    pool1/norm1                     0.0          711.3        0.538
4    conv2/3x3_reduce               25.7          471.6        0.828
5    conv2/3x3                     693.6          305.9       11.957
6    conv2/norm2                     0.0          771.6        1.488
7    pool2/3x3_s2                    1.4         1403.3        0.818
8    inception_3a/1x1               19.3          554.6        0.560
9    inception_3a/3x3_reduce        28.9          458.3        0.703
10   inception_3a/3x3              173.4          319.2        4.716
11   inception_3a/5x5_reduce         4.8         1035.8        0.283
12   inception_3a/5x5               20.1          716.0        0.872
13   inception_3a/pool               1.4          648.5        0.443
14   inception_3a/pool_proj          9.6          657.0        0.455
15   inception_3b/1x1               51.4          446.0        0.999
16   inception_3b/3x3_reduce        51.4          445.1        1.001
17   inception_3b/3x3              346.8          261.0        8.228
18   inception_3b/5x5_reduce        12.8          879.9        0.453
19   inception_3b/5x5              120.4          536.8        2.510
20   inception_3b/pool               1.8          678.7        0.564
21   inception_3b/pool_proj         25.7          631.2        0.656
22   pool3/3x3_s2                    0.8         1213.8        0.591
23   inception_4a/1x1               36.1          364.0        0.977
24   inception_4a/3x3_reduce        18.1          490.3        0.545
25   inception_4a/3x3               70.4          306.0        2.187
26   inception_4a/5x5_reduce         3.0          763.2        0.254
27   inception_4a/5x5                7.5          455.1        0.414
28   inception_4a/pool               0.8          604.6        0.297
29   inception_4a/pool_proj         12.0          613.0        0.389
30   inception_4b/1x1               32.1          349.6        0.995
31   inception_4b/3x3_reduce        22.5          385.6        0.780
32   inception_4b/3x3               88.5          280.9        2.888
33   inception_4b/5x5_reduce         4.8          576.7        0.373
34   inception_4b/5x5               15.1          339.7        0.885
35   inception_4b/pool               0.9          617.8        0.310
36   inception_4b/pool_proj         12.8          579.5        0.438
37   inception_4c/1x1               25.7          415.5        0.762
38   inception_4c/3x3_reduce        25.7          410.3        0.771
39   inception_4c/3x3              115.6          288.2        3.462
40   inception_4c/5x5_reduce         4.8          574.7        0.374
41   inception_4c/5x5               15.1          339.7        0.885
42   inception_4c/pool               0.9          615.3        0.311
43   inception_4c/pool_proj         12.8          577.3        0.440
44   inception_4d/1x1               22.5          382.9        0.786
45   inception_4d/3x3_reduce        28.9          489.2        0.679
46   inception_4d/3x3              146.3          402.9        2.981
47   inception_4d/5x5_reduce         6.4          728.9        0.305
48   inception_4d/5x5               20.1          408.5        0.979
49   inception_4d/pool               0.9          629.5        0.304
50   inception_4d/pool_proj         12.8          630.8        0.403
51   inception_4e/1x1               53.0          297.7        1.531
52   inception_4e/3x3_reduce        33.1          277.0        1.294
53   inception_4e/3x3              180.6          290.3        4.902
54   inception_4e/5x5_reduce         6.6          492.8        0.466
55   inception_4e/5x5               40.1          378.6        1.322
56   inception_4e/pool               0.9          633.0        0.312
57   inception_4e/pool_proj         26.5          446.8        0.731
58   pool4/3x3_s2                    0.4         1245.4        0.250
59   inception_5a/1x1               20.9          616.4        0.786
60   inception_5a/3x3_reduce        13.0          569.7        0.582
61   inception_5a/3x3               45.2          570.7        1.786
62   inception_5a/5x5_reduce         2.6          329.2        0.391
63   inception_5a/5x5               10.0          459.6        0.601
64   inception_5a/pool               0.4          531.7        0.146
65   inception_5a/pool_proj         10.4          514.9        0.546
66   inception_5b/1x1               31.3          607.0        1.133
67   inception_5b/3x3_reduce        15.7          612.0        0.625
68   inception_5b/3x3               65.0          606.1        2.366
69   inception_5b/5x5_reduce         3.9          375.0        0.410
70   inception_5b/5x5               15.1          475.0        0.866
71   inception_5b/pool               0.4          531.7        0.146
72   inception_5b/pool_proj         10.4          513.7        0.547
73   pool5/7x7_s1                    0.1          405.5        0.236
74   loss3/classifier                0.0         2559.7        0.764
75   prob                            0.0           10.0        0.192
---------------------------------------------------------------------------------------------
                                                                                                                                                          Total inference time                   93.66
---------------------------------------------------------------------------------------------
Generating Profile Report 'output_report.html'...

API

You can find the full documentation of the C API here and the Python API here. Gst-Inference uses only the C API and R2Inference takes care of devices, graphs, models and fifos. Because of this, we will only take a look at the options that you can change when using the C API through R2Inference.

R2Inference changes the options of the framework via the "IParameters" class. First you need to create an object:

r2i::RuntimeError error;
std::shared_ptr<r2i::IParameters> parameters = factory->MakeParameters (error);

Then call the "Set" or "Get" virtual functions:

parameters->Set(<option>, <value>)
parameters->Get(<option>, <value>)

Device Options

All the device options from the API are read only.

Option Value Description
NC_RO_DEVICE_THERMAL_STATS float array An array of lenght NC_RO_DEVICE_THERMAL_STATS with the temperature history of the device on Celsius.
NC_RO_THERMAL_THROTTLING_LEVEL 0,1,2
  • 0: No limit reached.
  • 1: Lower temperature guard threshold reached.
  • 2: Upper temperature guard threshold reached.
NC_RO_DEVICE_STATE ncDeviceState_t enum value
  • 0: NC_DEVICE_CREATED: The struct has been initialized.
  • 1: NC_DEVICE_OPENED: The device communication has been opened.
  • 2: NC_DEVICE_CLOSED: Communication with the device has been closed.
NC_RO_DEVICE_CURRENT_MEMORY_USED positive int Memory used on the device.
NC_RO_DEVICE_MEMORY_SIZE positive int Total memory available on the device.
NC_RO_DEVICE_MAX_FIFO_NUM positive int Max number of fifos.
NC_RO_DEVICE_ALLOCATED_FIFO_NUM positive int Number of fifos currently allocated.
NC_RO_DEVICE_MAX_GRAPH_NUM positive int Max number of graphs.
NC_RO_ALLOCATED_GRAPH_NUM positive int Number of graphs currently allocated.
NC_RO_DEVICE_OPTION_CLASS_LIMIT positive int Highest option class supported.
NC_RO_DEVICE_FW_VERSION [major, minor, hardware type, build number] Device firmware version.
NC_RO_DEVICE_HW_VERSION ncDeviceHwVersion_t enum value
  • 0: NC_MA2450
  • 1: NC_MA2480
NC_RO_DEVICE_MVTENSOR_VERSION [major, minor] mvtensor library version.
NC_RO_DEVICE_NAME string Device name.


Fifo Options

Fifo options are read only if they begin with the prefix NC_RO_FIFO and read/write if they begin with NC_RW_FIFO. Most of the R/W options on the FIFO can only be modified between creation and allocation, and R2Inference does both in a single method (Engine->Start()), so it is impossible to write on these options.

Option Value Description
NC_RW_FIFO_TYPE ncFifoType_t enum value
  • 0: NC_FIFO_HOST_RO: output fifo.
  • 1: NC_FIFO_HOST_WO: input fifo.
NC_RW_FIFO_DATA_TYPE ncFifoDataType_t enum value
  • 0: NC_FIFO_FP16: 16 bit float.
  • 1: NC_FIFO_FP32: 32 bit float.
NC_RO_FIFO_CAPACITY positive int FIFO queue size.
NC_RO_FIFO_READ_FILL_LEVEL positive int Elements on an output FIFO queue.
NC_RO_FIFO_WRITE_FILL_LEVEL positive int Elements on an input FIFO queue.
NC_RO_FIFO_GRAPH_TENSOR_DESCRIPTOR ncTensorDescriptor_t struct Shape of the tensor on the FIFO.
NC_RO_FIFO_STATE ncFifoState_t enum value
  • 0: NC_FIFO_CREATED: The FIFO has been created.
  • 1: NC_FIFO_ALLOCATED: The FIFO has been initializated.
NC_RO_FIFO_NAME string FIFO name.
NC_RO_FIFO_ELEMENT_DATA_SIZE positive int Size in bits of the FIFO elements.
NC_RW_FIFO_HOST_TENSOR_DESCRIPTOR ncTensorDescriptor_t struct Shape of the tensor on application.

Global Options

Pay special attention to the log level enumeration, because it is ordered counter intuitively. 1 is actually the highest log level, 4 is the lowest and 0 the default.

Option Value Description
NC_RW_LOG_LEVEL ncLogLevel_t enum value
  • 0: NC_LOG_DEBUG: Debug, warning, error and fatal.
  • 1: NC_LOG_INFO: Info, debug, warning, error and fatal.
  • 2: NC_LOG_WARN: Warning, error and fatal.
  • 3: NC_LOG_ERROR: Error and fatal.
  • 4: NC_LOG_FATAL: Fatal only.
NC_RO_API_VERSION [major, minor, hotfix, release] API version

Graph Options

Option Value Description
NC_RO_GRAPH_STATE ncGraphState_t enum value
  • 0: NC_GRAPH_CREATED: The struct has been initialized.
  • 1: NC_GRAPH_ALLOCATED: The graph has been allocated.
  • 2: NC_GRAPH_WAITING_FOR_BUFFERS: The graph is waiting for input.
  • 3: NC_GRAPH_RUNNING: The graph is currently running an inference.
NC_RO_GRAPH_TIME_TAKEN positive floats Time per layer for the last inference in milliseconds.
NC_RO_GRAPH_INPUT_TENSOR_DESCRIPTORS ncTensorDescriptor_t struct Array of graph inputs.
NC_RO_GRAPH_OUTPUT_TENSOR_DESCRIPTORS ncTensorDescriptor_t struct Array of graph outputs.
NC_RO_GRAPH_DEBUG_INFO string Debug information.
NC_RO_GRAPH_NAME string Graph name.
NC_RO_GRAPH_OPTION_CLASS_LIMIT positive int The highest option class supported.
NC_RO_GRAPH_VERSION [major, minor] The version of the compiled graph.
NC_RO_GRAPH_TIME_TAKEN_ARRAY_SIZE positive int Length of the time array (number of layers).


Previous: Supported backends Index Next: Example pipelines